.. _usage: Usage ===== ``langchain-couchbase`` provides several components to integrate Couchbase with LangChain: Vector Store ----------- Use Couchbase as a vector store for your embeddings: .. code-block:: python from langchain.embeddings import OpenAIEmbeddings from langchain_couchbase.vectorstores import CouchbaseVectorStore embeddings = OpenAIEmbeddings() vectorstore = CouchbaseVectorStore( connection_string="couchbase://localhost", username="Administrator", password="password", bucket_name="vector_bucket", scope_name="_default", collection_name="vector_collection", embedding=embeddings ) # Add documents texts = ["Couchbase is a NoSQL database", "LangChain is a framework for LLM applications"] vectorstore.add_texts(texts) # Search query = "What is Couchbase?" docs = vectorstore.similarity_search(query) Cache ----- Use Couchbase as a cache for LLM responses: .. code-block:: python from langchain.cache import BaseCache from langchain_couchbase.cache import CouchbaseCache from langchain.globals import set_llm_cache # Setup cache cache = CouchbaseCache( connection_string="couchbase://localhost", username="Administrator", password="password", bucket_name="langchain", scope_name="_default", collection_name="llm_cache" ) # Set as global cache set_llm_cache(cache) Chat Message History ------------------- Store chat history in Couchbase: .. code-block:: python from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory message_history = CouchbaseChatMessageHistory( connection_string="couchbase://localhost", username="Administrator", password="password", bucket_name="langchain", scope_name="_default", collection_name="chat_history", session_id="user-123" ) # Add messages message_history.add_user_message("Hello!") message_history.add_ai_message("Hi there! How can I help you today?") # Get messages messages = message_history.messages