CouchbaseSearchDocumentStore¤
CouchbaseSearchDocumentStore is a DocumentStore implementation that uses Couchbase capella service that is easy to deploy, operate, and scale.
The document store supports both scope-level and global-level vector search indexes:
- Scope-level indexes (default): The vector search index is created at the scope level and only searches documents within that scope
- Global-level indexes: The vector search index is created at the bucket level and can search across all scopes and collections in the bucket
The index level is specified using the is_global_level_index
parameter during initialization.
Source code in src/couchbase_haystack/document_stores/document_store.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
__init__ ¤
__init__(
*,
cluster_connection_string: Secret = Secret.from_env_var(
"CB_CONNECTION_STRING"
),
authenticator: Union[
CouchbasePasswordAuthenticator, CouchbaseCertificateAuthenticator
],
cluster_options: CouchbaseClusterOptions = CouchbaseClusterOptions(),
bucket: str,
scope: str,
collection: str,
vector_search_index: str,
is_global_level_index: bool = False,
**kwargs: Dict[str, Any]
)
:param cluster_connection_string: Connection string for the Couchbase cluster :param authenticator: Authentication method (password or certificate based) :param cluster_options: Options for configuring the cluster connection :param bucket: Name of the Couchbase bucket to use :param scope: Name of the scope within the bucket :param collection: Name of the collection within the scope :param vector_search_index: Name of the vector search index to use :param is_global_level_index: If True, uses a global (bucket-level) vector search index that can search across all scopes and collections. If False (default), uses a scope-level index that only searches within the specified scope. :param kwargs: Additional keyword arguments passed to the Cluster constructor
:raises ValueError: If the collection name contains invalid characters.
Source code in src/couchbase_haystack/document_stores/document_store.py
to_dict ¤
Serializes the component to a dictionary.
:returns: Dictionary with serialized data.
Source code in src/couchbase_haystack/document_stores/document_store.py
from_dict
classmethod
¤
Deserializes the component from a dictionary.
:param data: Dictionary to deserialize from. :returns: Deserialized component.
Source code in src/couchbase_haystack/document_stores/document_store.py
_get_search_interface ¤
Returns the appropriate search interface based on the index level configuration.
:returns: Either scope.search_indexes() for scope-level or connection.search_indexes() for global-level
Source code in src/couchbase_haystack/document_stores/document_store.py
count_documents ¤
Returns how many documents are present in the document store.
:returns: The number of documents in the document store.
Source code in src/couchbase_haystack/document_stores/document_store.py
filter_documents ¤
Returns the documents that match the filters provided.
For a detailed specification of the filters, refer to the Haystack documentation.
:param filters: The filters to apply. It returns only the documents that match the filters. :returns: A list of Documents that match the given filters.
Source code in src/couchbase_haystack/document_stores/document_store.py
write_documents ¤
Writes documents into the couchbase collection.
:param documents: A list of Documents to write to the document store. :param policy: The duplicate policy to use when writing documents. :raises DuplicateDocumentError: If a document with the same ID already exists in the document store and the policy is set to DuplicatePolicy.FAIL (or not specified). :raises ValueError: If the documents are not of type Document. :returns: The number of documents written to the document store.
Source code in src/couchbase_haystack/document_stores/document_store.py
delete_documents ¤
Deletes all documents with a matching document_ids from the document store.
:param document_ids: the document ids to delete
Source code in src/couchbase_haystack/document_stores/document_store.py
_embedding_retrieval ¤
_embedding_retrieval(
query_embedding: List[float],
top_k: int = 10,
search_query: SearchQuery = None,
limit: Optional[int] = None,
) -> List[Document]
Find the documents that are most similar to the provided query_embedding
by using a vector similarity metric.
:param query_embedding: Embedding of the query
:param top_k: How many documents to be returned by the vector query
:param search_query: Search filters param which is parsed to the Couchbase search query. The vector query and
search query are ORed operation.
:param limit: Maximum number of Documents to return. Defaults to top_k if not specified.
:returns: A list of Documents that are most similar to the given query_embedding
:raises ValueError: If query_embedding
is empty
:raises DocumentStoreError: If the retrieval of documents from Couchbase fails