CouchbaseSearchDocumentStore¤
CouchbaseSearchDocumentStore is a DocumentStore implementation that uses Couchbase capella service that is easy to deploy, operate, and scale.
The document store supports both scope-level and global-level vector search indexes:
- Scope-level indexes (default): The vector search index is created at the scope level and only searches documents within that scope
- Global-level indexes: The vector search index is created at the bucket level and can search across all scopes and collections in the bucket
The index level is specified using the is_global_level_index
parameter during initialization.
Source code in src/couchbase_haystack/document_stores/document_store.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
__init__ ¤
__init__(
*,
cluster_connection_string: Secret = Secret.from_env_var(
"CB_CONNECTION_STRING"
),
authenticator: Union[
CouchbasePasswordAuthenticator, CouchbaseCertificateAuthenticator
],
cluster_options: CouchbaseClusterOptions = CouchbaseClusterOptions(),
bucket: str,
scope: str,
collection: str,
vector_search_index: str,
is_global_level_index: bool = False,
**kwargs: Dict[str, Any]
)
Parameters:
-
cluster_connection_string
(Secret
, default:from_env_var('CB_CONNECTION_STRING')
) –Connection string for the Couchbase cluster
-
authenticator
(Union[CouchbasePasswordAuthenticator, CouchbaseCertificateAuthenticator]
) –Authentication method (password or certificate based)
-
cluster_options
(CouchbaseClusterOptions
, default:CouchbaseClusterOptions()
) –Options for configuring the cluster connection
-
bucket
(str
) –Name of the Couchbase bucket to use
-
scope
(str
) –Name of the scope within the bucket
-
collection
(str
) –Name of the collection within the scope
-
vector_search_index
(str
) –Name of the vector search index to use
-
is_global_level_index
(bool
, default:False
) –If True, uses a global (bucket-level) vector search index that can search across all scopes and collections. If False (default), uses a scope-level index that only searches within the specified scope.
-
kwargs
(Dict[str, Any]
, default:{}
) –Additional keyword arguments passed to the Cluster constructor
Raises:
-
ValueError
–If the collection name contains invalid characters.
Source code in src/couchbase_haystack/document_stores/document_store.py
to_dict ¤
Serializes the component to a dictionary.
Returns:
Source code in src/couchbase_haystack/document_stores/document_store.py
from_dict
classmethod
¤
Deserializes the component from a dictionary.
Parameters:
Returns:
-
CouchbaseSearchDocumentStore
–Deserialized component.
Source code in src/couchbase_haystack/document_stores/document_store.py
_get_search_interface ¤
Returns the appropriate search interface based on the index level configuration.
Returns:
-
–
Either scope.search_indexes() for scope-level or connection.search_indexes() for global-level
Source code in src/couchbase_haystack/document_stores/document_store.py
count_documents ¤
Returns how many documents are present in the document store.
Returns:
-
int
–The number of documents in the document store.
Source code in src/couchbase_haystack/document_stores/document_store.py
filter_documents ¤
Returns the documents that match the filters provided.
For a detailed specification of the filters, refer to the Haystack documentation.
Parameters:
-
filters
(Optional[Dict[str, Any]]
, default:None
) –The filters to apply. It returns only the documents that match the filters.
Returns:
-
List[Document]
–A list of Documents that match the given filters.
Source code in src/couchbase_haystack/document_stores/document_store.py
write_documents ¤
Writes documents into the couchbase collection.
Parameters:
-
documents
(List[Document]
) –A list of Documents to write to the document store.
-
policy
(DuplicatePolicy
, default:NONE
) –The duplicate policy to use when writing documents.
Raises:
-
DuplicateDocumentError
–If a document with the same ID already exists in the document store and the policy is set to DuplicatePolicy.FAIL (or not specified).
-
ValueError
–If the documents are not of type Document.
Returns:
-
int
–The number of documents written to the document store.
Source code in src/couchbase_haystack/document_stores/document_store.py
delete_documents ¤
Deletes all documents with a matching document_ids from the document store.
Parameters:
Source code in src/couchbase_haystack/document_stores/document_store.py
_embedding_retrieval ¤
_embedding_retrieval(
query_embedding: List[float],
top_k: int = 10,
search_query: SearchQuery = None,
limit: Optional[int] = None,
) -> List[Document]
Find the documents that are most similar to the provided query_embedding
by using a vector similarity metric.
Parameters:
-
query_embedding
(List[float]
) –Embedding of the query
-
top_k
(int
, default:10
) –How many documents to be returned by the vector query
-
search_query
(SearchQuery
, default:None
) –Search filters param which is parsed to the Couchbase search query. The vector query and search query are ORed operation.
-
limit
(Optional[int]
, default:None
) –Maximum number of Documents to return. Defaults to top_k if not specified.
Returns:
-
List[Document]
–A list of Documents that are most similar to the given
query_embedding
Raises:
-
ValueError
–If
query_embedding
is empty -
DocumentStoreError
–If the retrieval of documents from Couchbase fails
Source code in src/couchbase_haystack/document_stores/document_store.py
__get_doc_from_kv ¤
Gets documents from Couchbase KV store based on search results.
Parameters:
-
response
(SearchResult
) –Search results from Couchbase
Returns:
-
List[Document]
–List of Document objects
Raises:
-
DocumentStoreError
–If retrieving documents from Couchbase fails