Skip to main content

Couchbase Haystack Integration

A Haystack Document Store for Couchbase.

ci pypi version haystack version

Table of Contents

Overview

An integration of Couchbase NoSQL database with Haystack v2.0 by deepset. In Couchbase Vector search index is being used for indexing document embeddings and dense retrievals.

The library allows using Couchbase as a DocumentStore, and implements the required Protocol methods. You can start working with the implementation by importing it from couchbase_haystack package:

from couchbase_haystack import CouchbaseDocumentStore

In addition to the CouchbaseDocumentStore, the library includes the following Haystack components which can be used in a pipeline:

  • CouchbaseEmbeddingRetriever: A typical retriever component which can be used to query the vector store index and find related Documents. The component uses CouchbaseDocumentStore to query embeddings.

The couchbase-haystack library uses Python Driver.

CouchbaseDocumentStore will store Documents as JSON documents in Couchbase. Embeddings are stored as part of the document, with indexing and querying of vector embeddings managed by Couchbase's dedicated Vector Search Index.

                                   +-----------------------------+
| Couchbase Database |
+-----------------------------+
| |
| +----------------+ |
| | Data service | |
write_documents | +----------------+ |
+------------------------+----->| properties | |
| | | | |
+---------+--------------+ | | embedding | |
| | | +--------+-------+ |
| CouchbaseDocumentStore | | | |
| | | |index |
+---------+--------------+ | | |
| | +--------+--------+ |
| | | Search service | |
| | +-----------------+ |
+----------------------->| | FTS | |
query_embeddings | | Vector Index | |
| | (for embedding) | |
| +-----------------+ |
| |
+-----------------------------+

In the above diagram:

  • Data service: Supports the storing, setting, and retrieving of documents, specified by key. Basically where the documents are stored in key value.
  • Properties: Are Document attributes stored as part of the Document.
  • Embedding: Is also a property of the Document (just shown separately in the diagram for clarity) which is a vector of type LIST[FLOAT].
  • Search service: Where indexes specially purposed for Full Text Search and Vector search are created. The Search Service allows for efficient querying and retrieval based on both text content and vector embeddings.

CouchbaseDocumentStore requires the vector index to be created manually either by SDK or UI. Before writing documents, you should make sure Documents are embedded by one of the provided embedders. For example, SentenceTransformersDocumentEmbedder can be used in the indexing pipeline to calculate document embeddings before writing those to Couchbase.

Installation

couchbase-haystack can be installed as any other Python library, using pip:

pip install --upgrade pip # optional
pip install sentence-transformers # required in order to run pipeline examples given below
pip install couchbase-haystack

Usage

Running Couchbase

You will need a running instance of Couchbase to use the components from this package. There are several options available:

The simplest way to start the database locally is with a Docker container:

docker run \
--restart always \
--publish=8091-8096:8091-8096 --publish=11210:11210 \
--env COUCHBASE_ADMINISTRATOR_USERNAME=admin \
--env COUCHBASE_ADMINISTRATOR_PASSWORD=passw0rd \
couchbase:enterprise-7.6.2

In this example, the container is started using Couchbase Server version 7.6.2. The COUCHBASE_ADMINISTRATOR_USERNAME and COUCHBASE_ADMINISTRATOR_PASSWORD environment variables set the default credentials for authentication.

Note:
Assuming you have a Docker container running, navigate to http://localhost:8091 to open the Couchbase Web Console and explore your data.

Document Store

Once you have the package installed and the database running, you can start using CouchbaseDocumentStore as any other document stores that support embeddings.

from couchbase_haystack import CouchbaseDocumentStore

document_store = CouchbaseDocumentStore(
cluster_connection_string= Secret.from_token("localhost"),
authenticator=CouchbasePasswordAuthenticator(
username = Secret.from_token("username"),
password = Secret.from_token("password")
),
bucket = "haystack_bucket_name",
scope="haystack_scope_name",
collection="haystack_collection_name",
vector_search_index = "vector_search_index"
)

Assuming there is a list of documents available and a running Couchbase database, you can write/index those in Couchbase, e.g.:

from haystack import Document

documents = [Document(content="Alice has been living in New York City for the past 5 years.")]

document_store.write_documents(documents)

If you intend to obtain embeddings before writing documents, use the following code:

from haystack import Document

# import one of the available document embedders
from haystack.components.embedders import SentenceTransformersDocumentEmbedder

documents = [Document(content="My name is Morgan and I live in Paris.")]

document_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")
document_embedder.warm_up() # will download the model during first run
documents_with_embeddings = document_embedder.run(documents)

document_store.write_documents(documents_with_embeddings.get("documents"))

Make sure the embedding model produces vectors of the same size as it has been set on Couchbase Vector Index, e.g., setting embedding_dim=384 would comply with the "sentence-transformers/all-MiniLM-L6-v2" model.

Note Most of the time you will be using Haystack Pipelines to build both indexing and querying RAG scenarios.

It is important to understand how Haystack Documents are stored in Couchbase after you call write_documents.

from random import random

sample_embedding = [random() for _ in range(384)] # using fake/random embedding for brevity here to simplify example
Document(
content="Alice has been living in New York City for the past 5 years.", embedding=sample_embedding, meta={"num_of_years": 5}
)
document.to_dict()

The above code converts a Document to a dictionary and will render the following output:

>>> output:
{
"id": "11c255ad10bff4286781f596a5afd9ab093ed056d41bca4120c849058e52f24d",
"content": "Alice has been living in New York City for the past 5 years.",
"dataframe": None,
"blob": None,
"score": None,
"embedding": [0.025010755222666936, 0.27502931836911926, 0.22321073814882275, ...], # vector of size 384
"num_of_years": 5,
}

The data from the dictionary will be used to create a document in Couchbase after you write the document with document_store.write_documents([document]). You could query it with Cypher, e.g., MATCH (doc:Document) RETURN doc. Below is a JSON document Couchbase:

{
"id": "11c255ad10bff4286781f596a5afd9ab093ed056d41bca4120c849058e52f24d",
"embedding": [0.6394268274307251, 0.02501075528562069,0.27502933144569397, ...], // vector of size 384
"content": "Alice has been living in New York City for the past 5 years.",
"meta": {
"num_of_years": 5
}
}

The full list of parameters accepted by CouchbaseDocumentStore can be found in API documentation.

Indexing Documents

With Haystack you can use DocumentWriter component to write Documents into a Document Store. In the example below, we construct a pipeline to write documents to Couchbase using CouchbaseDocumentStore:

from haystack import Document
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
from haystack.components.writers import DocumentWriter
from haystack.pipeline import Pipeline

from couchbase_haystack import CouchbaseDocumentStore, CouchbasePasswordAuthenticator

documents = [Document(content="This is document 1"), Document(content="This is document 2")]

document_store = CouchbaseDocumentStore(
cluster_connection_string= Secret.from_token("localhost"),
authenticator=CouchbasePasswordAuthenticator(
username = Secret.from_token("username"),
password = Secret.from_token("password")
),
bucket = "haystack_bucket_name",
scope="haystack_scope_name",
collection="haystack_collection_name",
vector_search_index = "vector_search_index"
)
embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")
document_writer = DocumentWriter(document_store=document_store)

indexing_pipeline = Pipeline()
indexing_pipeline.add_component(instance=embedder, name="embedder")
indexing_pipeline.add_component(instance=document_writer, name="writer")

indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"embedder": {"documents": documents}})
>>> output:
`{'writer': {'documents_written': 2}}`

Retrieving Documents

CouchbaseEmbeddingRetriever component can be used to retrieve documents from Couchbase by querying vector index using an embedded query. Below is a pipeline which finds documents using query embedding:

from typing import List

from haystack import Document, Pipeline
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder

from couchbase_haystack.document_store import CouchbaseDocumentStore, CouchbasePasswordAuthenticator
from couchbase_haystack.component.retriever import CouchbaseEmbeddingRetriever

document_store = CouchbaseDocumentStore(
cluster_connection_string= Secret.from_token("localhost"),
authenticator=CouchbasePasswordAuthenticator(
username = Secret.from_token("username"),
password = Secret.from_token("password")
),
bucket = "haystack_bucket_name",
scope="haystack_scope_name",
collection="haystack_collection_name",
vector_search_index = "vector_search_index"
)

documents = [
Document(content="Alice has been living in New York City for the past 5 years.", meta={"num_of_years": 5, "city": "New York"}),
Document(content="John moved to Los Angeles 2 years ago and loves the sunny weather.", meta={"num_of_years": 2, "city": "Los Angeles"}),
]

# Same model is used for both query and Document embeddings
model_name = "sentence-transformers/all-MiniLM-L6-v2"

document_embedder = SentenceTransformersDocumentEmbedder(model=model_name)
document_embedder.warm_up()
documents_with_embeddings = document_embedder.run(documents)

document_store.write_documents(documents_with_embeddings.get("documents"))

print("Number of documents written: ", document_store.count_documents())

pipeline = Pipeline()
pipeline.add_component("text_embedder", SentenceTransformersTextEmbedder(model=model_name))
pipeline.add_component("retriever", CouchbaseEmbeddingRetriever(document_store=document_store))
pipeline.connect("text_embedder.embedding", "retriever.query_embedding")

result = pipeline.run(
data={
"text_embedder": {"text": "What cities do people live in?"},
"retriever": {
"top_k": 5
},
}
)

documents: List[Document] = result["retriever"]["documents"]
>>> output:
[Document(id=3e35fa03aff6e3c45e6560f58adc4fde3c436c111a8809c30133b5cb492e8694, content: 'Alice has been living in New York City for the past 5 years.', meta: {'num_of_years': 5, 'city': 'New York'}, score: 0.36796408891677856, embedding: "embedding": vector of size 384), Document(id=ca4d7d7d7ff6c13b950a88580ab134b2dc15b48a47b8f571a46b354b5344e5fa, content: 'John moved to Los Angeles 2 years ago and loves the sunny weather.', meta: {'num_of_years': 2, 'city': 'Los Angeles'}, score: 0.3126790523529053, embedding: vector of size 384)]

More Examples

You can find more examples in the implementation repository:

License

couchbase-haystack is distributed under the terms of the MIT license.